Search results for "Metamorphic core complex"
showing 10 items of 13 documents
Geochemistry, petrogenesis and tectonic setting of the Samothraki mafic suite, NE Greece: Trace-element, isotopic and zircon age constraints
2009
Abstract The Samothraki mafic suite in the north-eastern Aegean Sea, Greece, is an ‘in situ’ magmatic complex comprising gabbros, sparse dykes and basalt flows and pillows cut by late dolerite dykes. We have determined the age of the complex by SHRIMP zircon geochronology of a gabbro as 159.9 ± 4.5 Ma (i.e. Oxfordian; early Late Jurassic), which precludes any correlation with the so-called Lesvos ophiolite further south (253.1 ± 5.6 Ma; Latest Permian). Six distinct, hitherto unrecognised, geochemical groups have been identified among the basalts and dolerites of the Samothraki mafic suite on the basis of trace-element and Nd–Sr isotopic characteristics. All groups show the presence of an e…
The effect of energy feedbacks on continental strength
2005
The classical strength profile of continents is derived from a quasi-static view of their rheological response to stress--one that does not consider dynamic interactions between brittle and ductile layers. Such interactions result in complexities of failure in the brittle-ductile transition and the need to couple energy to understand strain localization. Here we investigate continental deformation by solving the fully coupled energy, momentum and continuum equations. We show that this approach produces unexpected feedback processes, leading to a significantly weaker dynamic strength evolution. In our model, stress localization focused on the brittle-ductile transition leads to the spontaneo…
A strike-slip core complex from the Najd fault system, Arabian shield
2014
Metamorphic core complexes are usually thought to be associated with regional crustal extension and crustal thinning, where deep crustal material is exhumed along gently dipping normal shear zones oblique to the regional extension direction. We present a new mechanism whereby metamorphic core complexes can be exhumed along crustal-scale strike-slip fault systems that accommodated crustal shortening. The Qazaz metamorphic dome in Saudi Arabia was exhumed along a gently dipping jog in a crustal-scale vertical strike-slip fault zone that caused more than 25 km of exhumation of lower crustal rocks by 30 km of lateral motion. Subsequently, the complex was transected by a branch of the strike-sli…
Tectonometamorphic evolution of high-pressure rocks from the island of Amorgos (Central Aegean, Greece)
2007
Structural and metamorphic data from the island of Amorgos (central Aegean Sea) show evidence for the existence of two distinct high-pressure units, the Metabasite Unit and the Basal Conglomerate Unit. These are exposed at the base of a thick marble sequence and overlying flysch deposits. The Metabasite Unit is characterized by a mineral assemblage of blue amphibole, garnet and clinopyroxene, indicating P – T conditions of 500–600 °C and >13 kbar. It is juxtaposed below carpholite-bearing metaconglomerates and quartz-rich micaschists of the Basal Conglomerate Unit, for which metamorphic conditions of 300–450 °C and 10–14 kbar are estimated. The contact between the two units is interpreted a…
Age and evolution of late Mesozoic metamorphic core complexes in southern Siberia and northern Mongolia
2008
Numerous Cretaceous metamorphic core complexes (MCCs) extend from Transbaikalia in Russia to northern Mongolia within the Central Asian Orogenic Belt. We investigated the Buteel and Zagan MCCs in detail. Shear sense indicators in mylonitized rocks show footwall-to-the-NW tectonic transport. Single zircon dating of footwall rocks in the Buteel MCC establishes the emplacement of granitoid orthogneiss precursors at 240–211 Ma, a felsic metavolcanic rock at 265.0 ± 1.2 Ma, a syenite at 265.5 ± 1.2 Ma and a metarhyolite of the pre-granitoid basement at 553.6 ± 2.9 Ma. A peralkaline granite intruding orthogneisses of the Zagan MCC has a new U–Pb zircon age of 151.6 ± 0.7 Ma. 40Ar/39Ar ages of 133…
Tectonic denudation of a Late Cretaceous-Tertiary collisional belt: Regionally symmetric cooling patterns and their relation to extensional faults in…
2003
Thermochronological data reveal that the Late Cretaceous–Tertiary nappe pile of the Anatolide belt of western Turkey displays a two-stage cooling history. Three crustal segments differing in structure and cooling history have been identified. The Central Menderes metamorphic core complex represents an ‘inner’ axial segment of the Anatolide belt and exposes the lowest structural levels of the nappe pile, whereas the two ‘outer’ submassifs, the Gördes submassif to the north and the Çine submassif to the south, represent higher levels of the nappe pile. A regionally significant phase of cooling in the Late Oligocene and Early Miocene affected the outer two submassifs and the upper structural l…
U–Pb SIMS dating of synkinematic granites: timing of core-complex formation in the northern Anatolide belt of western Turkey
2005
Secondary ion mass spectrometry (SIMS) U–Th–Pb dating of magmatic zircon from the synkinematic Egrigoz and Koyunoba granites and a leucogranite dyke dates core-complex formation in the northern Anatolide belt of western Turkey at 24–19 Ma. The granites intrude into the footwall of the Simav detachment and are strongly elongated in the NNE direction parallel to tectonic transport on the detachment. Although large parts of the granites are undeformed, localized mylonitic to ultramylonitic deformation occurs directly beneath the Simav detachment and preserves evidence of progressive deformation from ductile to brittle conditions. Oscillatory zoned rims of long-prismatic zircon from the Egrigoz…
The evolution of the southern Menderes Massif in SW Turkey as revealed by zircon dating
1999
This geochronological study concentrates on the evolution of the southern part of the Menderes Massif, a metamorphic core complex in W Turkey, by dating single zircons with the Pb–Pb evaporation and the U–Pb methods. We have analysed zircons from granitic augen gneisses of the core as well as from quartzites of the metasedimentary envelope. Zircons from the granitic core gneisses are euhedral with typical igneous morphologies. The single zircon ages of these gneisses indicate a time span for magmatic activity from 520 to 570 Ma with a major event at about 550 Ma. Some gneisses contain older zircons of c. 660 Ma which are interpreted as inherited grains. Zircons from the quartzites are detri…
Geometric aspects of synkinematic granite intrusion into a ductile shear zone — an example from the Yunmengshan core complex, northern China
2005
The Cretaceous Yungmengshan core complex in northern China contains a large syntectonic granodiorite batholith that intrudes a slightly older diorite intrusion. A major gently dipping ductile decollement shear zone is developed along the contact of the diorite and granodiorite. The shear zone is invaded by a large volume of granitic and pegmatite veins associated with the main granodiorite batholith during activity of the shear zone under high-grade metamorphic conditions. Progressively older veins are more strongly deformed into tight cylindrical fold structures rotated into parallelism with the lineation and foliation in the shear zone. Parallelism of veins to the foliation is partly due …
Formation of arcuate orogenic belts in the western Mediterranean region
2004
The Alpine orogen in the western Mediterranean region, consisting of the Rif-Betic belt and the Apennine-Calabrian-Maghrebide belt, is a classic example of an arcuate orogen. It contains fragments of Cretaceous to Oligocene high-pressure/low-temperature (HP/LT) rocks, which were exhumed and dispersed during post-Oligocene extensional deformation and are presently exposed in the soles of metamorphic core complexes. In this paper, we illustrate that the arcuate shape of the orogenic belt was attained during extensional destruction of the earlier HP/LT belt, driven by subduction rollback in a direction oblique or orthogonal to the direction of convergence. Since the Oligocene, sub-duction of M…